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Abstract. In the framework of percolation of color sources, the transverse momentum distribution in heavy
ion and p + p collisions at all centralities and energies are shown to follow a universal behavior. The width
of the distribution depends on the fluctuations of the number of color sources per cluster. At low densities,
there are only independent single color sources, no fluctuations occur and the distribution is described by
a single exponential. At very high densities, only one cluster of many color sources appears and therefore
there are not fluctuations either and the hardness of the distribution is suppressed. The Cronin effect
in this framework is due to a maximum of the fluctuations which decreases as the density increases. We
obtain a good agreement with experimental data including the low pT behavior and the spectra for different
particles. We show that the transverse momentum and multiplicity distributions are related to each other
in a defined way. This point is satisfied by the experimental data on p + p collisions at different energies.

1 Introduction

Many data have already been collected and analyzed dur-
ing past few years at the Relativistic Heavy Ion Collider
(RHIC) in order to obtain a complete understanding of the
dense QCD matter which is created in high energy heavy
ion collisions.

These data show that the inclusive high pT hadron
production in Au + Au central collisions is strongly sup-
pressed [1–3] compared to the scaling with the number of
binary nucleon–nucleon collisions, Ncoll, expected on the
basis of the factorization theorem for hard processes in
perturbative QCD (pQCD) [4]. The suppression is larger
at forward than at mid-rapidities [5]. No suppression was
found in d + Au collisions [6, 7] at mid-rapidity. Further-
more, the proton and antiproton yields become similar to
the pion one at pT ≈ 1–2 GeV/c [6]. The ratio between
the yields from central and peripheral Au + Au collisions
is larger for protons than for pions at pT ≈ 2–5 GeV/c [6].
On the other hand, at low pT, the yield for pions is larger
than the one for kaons, and both are larger than the one
for protons [8,9]. At very low pT, the spectra for all species
show a characteristic behavior [9].

The data also show the disappearance of back to back
jet-like hadron correlations in Au+Au collisions, contrary
to what is observed in d + Au and p + p collisions [10,11]
and a peculiar behavior of the fluctuations in transverse
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momentum [12,13], with a maximum at a certain centrality
given by a number of participants around Npart ≈ 150.

All these data have given rise to a lot of discussion
and different explanations, aimed to discriminate which of
these effects are caused by initial state interactions and
which ones are a consequence of final state interactions.

Here we are going to concentrate on the explanations
based on initial state interactions. Different mechanisms
of initial state interactions have been proposed, like satu-
ration in high density QCD through the color glass con-
densate (CGC) [14–16] or clustering of strings [17] in the
stringmodels. Another possibility is the shadowing through
pomeron interaction in the dual parton model [18]. All these
mechanisms have in common the modification of a multi-
ple scattering pattern – in the target rest frame – or gluon
interaction – in a fast moving frame.

In the framework of the color glass condensate, the
number of gluons in the hadron wave function can reach
saturation when their momenta become smaller than a
saturation scale Qs(x) ∼ x−λsA1/3. Clustering and perco-
lation of color sources, strings or partons, can also be seen
as an initial state interaction phenomenon. In the case of
strings, these are formed by color fields stretched between
partons of the projectile and the target, located at the
ends of the strings. These partons are embedded in the
wave function of the projectile and the target [19]. In this
case, above a critical density, a cluster of color sources –
strings – is formed through the whole collision area.
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In both approaches, if the number of partons exceeds
a critical quantity, they will begin to overlap in the trans-
verse plane, and interact with each other, which prevents
further growth of parton densities. As the number of strings
is mainly determined by the number of inelastic parton–
parton collisions, the density of strings is not a property
of the isolated projectile. Nevertheless, since the density of
strings is connected with the density of partons and since
the interaction and percolation of strings takes place before
the formation of final secondaries – before fragmentation,
we call our effect initial.

From this point of view, the suppression of pT and
the reduction of multiplicities have the same origin [20,
21], namely, the overlapping of color sources. In both ap-
proaches, the transverse momentum distributions satisfy
a scaling law which is in agreement with the experimen-
tal data. In the CGC, the suppression was predicted to
be stronger outside mid-rapidity and this point was later
confirmed [5]. Below, we will show that this is also the case
in the framework of percolation of strings.

A more quantitative comparison of the results of both
approaches shows also a remarkable agreement [22]. The
fact that the results of the string clustering approach, which
is a soft, QCD inspired but model dependent description,
coincide with the results of the CGC picture, which is a
theory deduced from perturbative QCD, induce us to think
about the possibility of a smooth transition between soft
andhard regimes andabout aperturbative confinement [23].

All these features, together with a correct description
of the transverse momentum fluctuations and of the low pT
data, point out the existence of initial state interactions.
On the other hand, the disappearance of back to back jet-
like hadron correlations in Au + Au collisions, contrary to
what happens in d+Au collisions, seems to point out a final
state interaction description such as jet-quenching [24] or
interactions with partons and comovers [25].

The Cronin effect is crucial in order to discriminate
which kind of interaction is working [26]. In this paper we
will show that this effect is a low energy one, and it is going
to disappear at higher energies and/or densities. Similar
results are obtained in the framework of the CGC [27].

Before starting with the description of our model, let us
remember some general features concerning the clustering.

On general grounds, in the clustering approach, one
has to distinguish between two density regimes, high and
low. Let us give a very simple example: the problem of
throwing NS coins into M boxes (one can read: production
of NS partons or strings in the interaction area πR2). The
distribution P (N) of N coins in a box (one can read: N
partons or strings in a cluster) can be studied and, in
particular, the inverse normalized fluctuation k,

k =
〈N〉2

〈N2〉 − 〈N〉2 , (1)

canbe analytically calculated.At small density,η = NS
M <<

1, the coins are isolated and k → ∞. At large density,
η >> 1, the coins are equally distributed in the boxes and,
again k → ∞. At some intermediate value ηmin, there is a

minimum. In the low density regime η < ηmin, k decreases
as η increases, while in the high density regime η > ηmin,
k increases with η.

This behavior for the fluctuations in the number of
partons or strings in a cluster will be crucial in order to
explain most of the data. In this paper we will explore
these points in the framework of string percolation, using
the strings as our basic objects.

The use of strings could be considered as very model de-
pendent. Nevertheless, the string structure can be derived
directly from QCD under certain approximations [28–30].
In fact, a string profile can be derived from the study of cor-
relators of gluons fields, a profile which is in agreement with
the results obtained independently in lattice QCD [30].

In order to apply these ideas, we will use the following
ingredients: We need to know the number of strings NS. Up
to RHIC energies, NS in the central rapidity region is ap-
proximately twice the number of collisions, Ncoll. However
NS can be larger at RHIC and LHC energies. We compute
NS using the quark–gluon string model, equivalent to the
dual parton model [31, 32]. Most of the reasonable string
models [33–39] of heavy ions collisions obtained similar re-
sults for NS. This fact gives us confidence in our values.
Notice that sometimes, even in experimental analyses, Ncoll
is obtained from the Glauber model without attention for
taking into account energy-momentum conservation. At
high energy this conservation reduces Ncoll. In our com-
putation of NS we use a Monte-Carlo code [39], based on
the quark–gluon string model, which takes into account
energy-momentum conservation.

In order to obtain analytical formulae which can give an
insight of the physical grounds we use a soft (exp(−ap2

T))
transverse momentum distribution [40] and a Poisson-like
multiplicity distribution for the fragmentation of one string.
We are aware that a string can also produce hard particles
as in the Lund string model [41], and our simplification
must be seen as a first approximation which clearly would
fail at very high pT. In spite of this, we will show how
the clustering of strings gives rise to a universal behavior
of both the transverse momentum distribution and the
multiplicity distribution, which are related to each other
through a gamma distribution that represents the cluster
weight function.

By the overlapping of soft strings, the soft spectrum
gets a hard-like contribution. This behavior must be seen
as complementary to what happens in parton saturation in
the CGC, where the clustering of gluons results in a softer
spectrum. At RHIC and LHC energies, there is a large
range of pT where both descriptions should coincide. Of
course, we do not claim to give a description for the whole
pT range at fixed energy. Our explanation applies from low
to intermediate pT range. This range increases with the
energy. At very high pT, a perturbative QCD description
will be necessary.

The plan of this paper is as follows: first we describe
our approach and we derive the transverse momentum and
multiplicity distributions, in order to compare them with
experimental data in the next chapter. The comparison in-
cludes p + p data and predictions for LHC energies. After
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that, we discuss the effect of the clustering on the disap-
pearance of back to back jet-like hadron correlations. We
will finish with some conclusions.

2 Percolation of strings, transverse momentum
and multiplicity distributions

Multiparticle production is currently described in terms of
color strings stretched between the partons of the projectile
and the target. These strings decay into new ones by sea
q–q production, and subsequently hadronize to produce the
observed hadrons. The color in these strings is confined to
a small area in the transverse space, πr2

0, with r0 � 0.2–
0.25 fm. This value is obtained in the vacuum correlator
method and corresponds to the correlation length of the
QCD vacuum. This value is in accordance with lattice re-
sults.

With increasing energy and/or atomic number of the
colliding particles, the number of exchanged strings grows,
and they start to overlap, forming clusters, very much like
disks in the continuum two-dimensional percolation theory.
At a certain critical density ηc = 1.18–1.5 (depending on the
type of employed profile functions – homogeneous orWood–
Saxon) a macroscopical cluster appears, which marks the
percolation phase transition. For nuclear collisions, this
density corresponds to η = NS

S1
SA

where NS is the total
number of strings created in the collision, each one of an area
S1 = πr2

0 and SA corresponds to the nuclear overlapping
area so it depends on the impact parameter b. For very
central collisions b = 0 and SA = πR2

A.
The percolation theory governs the geometrical pattern

of the string clustering. Its observable implications, how-
ever, require the introduction of some dynamics in order
to describe the behavior of the cluster formed by several
overlapping strings. We assume that a cluster of n strings
behaves as a single string with an energy-momentum that
corresponds to the sum of the energy-momenta of the over-
lapping strings [17–20], and with a higher color field, corre-
sponding to the vectorial sum of the color charges of each

individual
→
Q1 string. The resulting color field covers the

area Sn of the cluster. As
→
Q2

n=
(∑n

1

→
Q1

)2

, respective to

one another, and the individual string colors may be arbi-

trarily oriented, the average
→
Q1i

→
Q1j is zero, so

→
Q2

n= n
→
Q2

1.→
Qn depends also on the area S1 of each individual string
that comes into the cluster, as well as on the total area of
the cluster Sn:

Qn =
√

n
Sn

S1
Q1 . (2)

We take S1 constant and equal to a disc of radius r0. Sn

corresponds to the total area occupied by n discs, which
of course can be different for different configurations even
if the clusters have the same number of strings. One could
make reasonable alternative assumptions about the inter-
action among the strings, as it was studied previously [20],
but the comparison with the data on the dependence of

the strength of the two-body [42] and three-body Bose–
Einstein correlations of the multiplicities [43], clearly favors
(2).

Notice that if the strings are just touching each other,
Sn = nS1 and Qn = nQ1, so the strings act independently
to each other. On the contrary, if they fully overlap Sn = S1
and Qn =

√
nQ1, then we obtain a reduction of the color

charge. Knowing the color charge Qn, one can compute
the multiplicity µn and the mean transverse momentum
squared 〈p2

T〉n of the particles produced by a cluster, which
are proportional to the color charge and color field [20,21],
respectively

µn =
√

nSn

S1
µ1, 〈p2

T〉n =
√

nS1

Sn
〈p2

T〉1, (3)

where µ1 and 〈p2
T〉1 are the mean multiplicity and mean

p2
T of particles produced by a single string. We observe

µn〈p2
T〉n = nµ1〈p2

T〉1, µn

〈p2
T〉 n =

Sn

S1

µ1

〈p2
T〉 1 . (4)

The first relation denotes that the product is an ex-
tensive quantity, while the second one indicates that each
cluster satisfies a scaling law that is nothing but the Gauss
theorem. From the Schwinger formula, one obtains µ1 =
S1〈p2

T〉1. From the experimental data we can fix µ1 and
〈p2

T〉1, obtaining r0 � 0.2–0.25 fm in agreement with the
above mentioned QCD result.

Moreover, in the limit of high density η, one obtains〈
n

S1

Sn

〉
=

η

1 − exp (−η)
≡ 1

F (η)2
, (5)

and the equations (3) transform into the analytical ones [20]

µ = Nstrings F (η) µ1, 〈p2
T〉 =

1
F (η)

〈p2
T〉1, (6)

where µ and 〈p2
T〉 are the total multiplicity and mean trans-

verse momentum and Nstrings is the total number of created
strings in the considered rapidity range.

In themid-rapidity region, the number of stringsNstrings
is proportional to the number of A + A collisions, Ncoll ∼
N

4/3
A [44, 45], NA being the number of wounded nucleons

of one nucleus. In this case, the density of strings becomes
η = Nstrings

S1
SA

∼ N
2/3
A . At high densities, one should

consider the percolation limit – all the strings overlap into
a single cluster that occupies the whole nuclear overlap
area. In this case, from (3) one obtains

µA =
√

Nstrings · SA

S1
µ1, where SA = πR2

A ∝ N
2/3
A .

In other words, the multiplicity per participant becomes
independent of NA, i.e. saturates.

Outside mid-rapidity, Nstrings is proportional to the
number of participants NA instead of to the number of
collisions N

4/3
A . Therefore, there is an additional suppres-

sion factor N
1/3
A compared to central rapidity. This fact
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is at the origin of the larger suppression at y = 3 of the
observed pT distributions in Au+Au and d+Au collisions.

We use (3) to compute the multiplicities, using a Monte-
Carlo code based on the quark-gluon string model to gener-
ate the strings [39]. Each string is produced at an identified
impact parameter. From this, knowing the transverse area
of each string, we identify all the clusters formed in each
collisions and subsequently compute for each of them its
multiplicity in units of µ1. The value of µ1 was fixed by
the comparison of our results with WA98 data for Pb+Pb
central collisions. Our results are in agreement with SPS
and RHIC multiplicity data [21].

Using the first of the equations (6) we obtain very sim-
ilar results [45]. We observe a weak dependence on NA of
the rapidity density per participant at high centrality, i.e.
saturation. On the other hand, in the fragmentation region,
we expect the particle density per participant nucleon to
be equal or even less than the nucleon–nucleon rapidity
density [45]. Both features, saturation and fragmentation
scaling, are in agreement with experimental data.

Until now we have presented our results concerning
mean values – mean multiplicity and mean pT. In order to
get distributions, we will develop the following strategy:
we will introduce the multiplicity and the transverse mo-
mentum distribution for the fragmentation of one string.
We will weight them with the cluster function, and then
we will introduce the effect of the overlapping through
F (η). We will check that we obtain the relation (6) for the
mean values.

The multiplicity distribution in heavy ion collisions can
be expressed [46] as a superposition of Poisson distributions
with different mean multiplicities,

P (n) =
∫

dN W (N) P (N, n). (7)

The Poisson distribution P (N, n) = e−N Nn

n! , N = 〈n〉, rep-
resents the cluster fragmentation, while the weight factor
W (N) reflects the mean multiplicity distribution of the
clusters, related to the cluster size distribution and to the
number of strings per cluster. This quantity has contri-
butions due to both the nuclear structure and the parton
distribution inside the nucleon.

Concerning the transverse momentum distribution, one
needs the distribution f(x, pT) for each string or cluster,
and the mean squared transverse momentum distribution
of the clusters, W (x), which is also related to the cluster
size distribution through the cluster tension. For f(x, pT)
we assume the Schwinger formula, f(x, pT) = exp(−p2

Tx),
used also for the fragmentation of a Lund string. In this
formula x is related to the string tension, or equivalently
to the mean transverse mass of the string. Assuming that a
cluster behaves similarly to a single string but with differ-
ent string tension, that depends on the number of strings
that come into the cluster, we can write for the total pT
distribution

f(pt) =
∫

W (x) f(x, pT) . (8)

Fig. 1. Schematic representation of the number of clusters as
a function of the number of strings of each cluster at three
different centralities (the continuous line corresponds to the
most peripheral one and the pointed line to the most central one)

The weight function W (x) obeys the gamma distribution

W (x) =
γ

Γ (k)
(γx)k−1 exp (−γx) . (9)

The reason to choose a gamma distribution is the follow-
ing: in peripheral heavy ion collisions, the density of strings
is small and therefore there is no overlapping. The clus-
ter size distribution in this case is peaked at low values.
As the centrality increases, the density of strings also in-
creases, so there is more and more overlapping among the
strings. The cluster size distribution is strongly modified,
according to the picture shown in Fig. 1, where we have
plotted three cluster distributions that correspond to three
increasing centralities of the collision. Each curve in Fig. 1
can be compared to a gamma distribution, with different k
values. Moreover, the increase of centrality can be seen as
a transformation of the cluster size distribution of the type

P (N) −→ NP (N)
〈N〉 −→ . . . −→ NkP (N)

〈Nk〉 −→ . . . (10)

This kind of transformations were studied long ago by
Jona-Lasinio in connection to the renormalization group
in probabilistic theory [47]. Actually, an increase of the
centrality implies a transformation from clusters with very
few strings to another set of cluster with a higher number
of strings, as can be seen in Fig. 1, and a renormalization
of the main variables of the clusters, i.e. mean transverse
momentum and mean multiplicity, induced by the higher
color of the new clusters. These transformations have been
used to study the probability distribution associated to
rare events [48,49].
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Introducing (9) into (7) and (8) we obtain

Γ (n + k)
Γ (n + 1)Γ (k)

γ′k

(1 + γ′)n+k
(11)

=
∫ ∞

0
dN

e−NNn

n!
γ′

Γ (k)
(γ′N)k−1 exp (−γ′N)

and

1(
1 + p2

T
γ

)k
(12)

=
∫ ∞

0
dx exp (−p2

Tx)
γ

Γ (k)
(γx)k−1 exp (−γx) .

The distribution obtained in (11) is the well known nega-
tive binomial distribution, whose mean value and disper-
sion verify

〈n〉 = 〈N〉 =
k

γ′ ,
〈N2〉 − 〈N〉2

〈N〉2 =
1
k

,

〈n2〉 − 〈n〉2
〈n〉2 =

1
k

+
1

〈n〉 . (13)

In the distribution (12) the corresponding values are

〈x〉 =
k

γ
,

〈x2〉 − 〈x〉2
〈x〉2 =

1
k

. (14)

The parameters γ and γ′ are different, since 〈N〉 �= 〈x〉,
while k is the same in both equations.

Equations (11) and (12) can be seen as a superposition
of chaotic sources – clusters – where 1

k fixes the transverse
momentum fluctuations. At small density, η << 1, the
strings are isolated andk → ∞.When the density increases,
there will be some overlapping of strings forming clusters,
increasing the denominator of (1) and therefore decreasing
k. The minimum of k will be reached when the fluctuations
in the number of strings per cluster reach its maximum.
Above this point, increasing η, these fluctuations decrease
and k increases.

The distribution W (x) satisfies the Koba–Nielsen–
Olsen scaling, i. e. 〈x〉W (x) depends only on x

〈x〉
1. This

property [50] stems from the type of the transformations
(10).

In order to take into account the effect of overlap-
ping of strings on the multiplicity and the mean trans-
verse momentum, we need to included our factor F (η) in
the corresponding fragmentation functions, so the Poisson
distribution transforms into P (N, n) = e−NF (η)(NF (η))n

n!
and the Schwinger formula transforms into f(x, mT) =
exp(−m2

TxF (η)). Indeed, what is happening is that the
invariance of the weight function under the transforma-
tion x → λx and γ → γ/λ (or equivalently N → λN
and γ′ → γ′/λ), where λ = F (η), leads to the changes
〈p2

T〉 → 〈p2
T〉/λ and 〈n〉 → λ〈n〉 in the transverse mass and

multiplicity distributions respectively.
1 However, it can depend on the energy through k.

The multiplicity distribution becomes then the univer-
sal function

Γ (n + k)
Γ (n + 1)Γ (k)

(γ′/F (η))k

(1 + (γ′/F (η)))n+k
(15)

=
Γ (n + k)

Γ (n + 1)Γ (k)
(k/(〈n〉1F (η)))k

(1 + ((k/(〈n〉1F (η))))n+k

and the transverse momentum distribution behaves as

f(pT, y) =
dN

dy

k − 1
γ/F (η)

1(
1 + p2

T
γ/F (η)

)k

=
dN

dy

k − 1
k〈p2

T〉1 F (η)
1(

1 + F (η) p2
T

k 〈p2
T〉1

)k
. (16)

The above equation has been normalized to

f(pT, y) =
dN

dp2
Tdy

. (17)

In the new distributions, 〈p2
T〉 = 〈p2

T〉old/F (η) and
〈n〉 = F (η)〈n〉old, compared to (11) and (12). This agrees
with our result from (6).

We have, in particular,

〈n〉 = F (η)Ns〈n〉1 = F (η)η
(

RA

r0

)2

〈n〉1,

〈p2
T〉 =

k

k − 2
〈p2

T〉1
F (η)

(18)

and the p2
T dispersion

Dp2
T = 〈p2

T〉
√

k − 1
k − 3

. (19)

Equations (15) and (16) summarize our main results.
The multiplicity and transverse momentum distributions
for any type of collision and degree of centrality are univer-
sal functions which depend only on one parameter, 〈n1〉 and
〈p2

T〉1 respectively. These parameters are related to γ′ and
γ through (13) and (14). Because of this, our parameters
γ and γ′ in the weight function are different.

The additional parameter k depends on η in the way
that has been pointed out before. It is related to the fluc-
tuations in the number of strings per cluster by (1) and
plays an important role in the behavior of the dependence
of the transverse momentum fluctuations on the number
of participants [51,52]. Notice that both distributions are
obtained from the same kernel, the gamma distribution,
with the same parameter k. This fact implies that they are
related to each other. In particular, the suppression of high
pT production in (16) is controlled by k which also provides
us the width of the multiplicity distribution at high mul-
tiplicities. Due to this, we predict that in p + p collisions
at LHC energies, where the string densities will be very
high, the k value will be higher and in consequence both
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distributions, the multiplicity and transverse momentum
one, will be narrower.

The relation between both distributions can be checked
directly with the existing experimental data from p + p
collisions. In fact, fixing the k values from fits to the mul-
tiplicity distributions, we have fitted the transverse mo-
mentum distributions, with the power law A(1 + bp2

T)−k

obtaining an overall agreement with experimental data at√
s = 23, 200, 630 and 1800 GeV. The detailed comparison

is done in [53].
The values 〈n〉1 and 〈p2

T〉1 stand for the average over all
particles. If we are interested in the study of a particular
particle species i, we shall write 〈n〉1i and 〈p2

T〉1i.
At η → ∞, k → ∞ and the distribution (16) becomes

exp(−F (η)p2
T/〈p2

T〉1i), very similar to the behavior at η →
0, exp(−p2

T/〈p2
T〉1i).

From (16) one can calculate

d ln f

d ln pT
=

−2F (η)(
1 + F (η)

k

p2
T

〈p2
T〉1i

) p2
T

〈p2
T〉1i

. (20)

As p2
T → 0, this reduces to

−2F (η)p2
T/〈p2

T〉1i , (21)

while for large pT, it becomes −2k.
We use a gamma distribution for the clusters, which is

reasonable due to the above mentioned arguments. It may
be possible to use other distributions which have the same
properties concerning the dependence of their mean value
and dispersion on the centrality. The resulting multiplicity
and transverse momentum distributions in that case would
be very similar to (15) and (16). Nevertheless, we have
additional confidence in our assumption, since the resulting
multiplicity and transverse momentum distributions have
a reasonable agreement with experimental data. In fact,
the negative binomial distribution is in good agreement
with the multiplicity distribution for p + p collisions in a
broad range of energies, and it can also describe the h+A
and A + A multiplicity distributions.

The power-like behavior (p2
T)−k found for the trans-

verse momentum distribution, with an exponent related to
some intrinsic fluctuations, is common to many apparently
different systems, as sociological, biological or informatics
ones [54–56]. Distributions that describe the growth of the
wealth of people living in stable economical systems, the
distribution of the citations of the scientific works, or other
complex networks where the probability P (m) of having
a given node with m links is described by the free scale
power law P (m) ∼ (m)−k with k close to 3 obey the same
behavior. Also, it has been shown [56,57] that maximiza-
tion of the non-extensive information Tsallis entropy leads
to the distribution (16).

This universal behavior indicates the importance of the
common features present in those phenomena, namely, the
cluster structure and the fluctuations in the number of
objects per cluster.

3 Density dependence
of the mean transverse momentum and k

A more specific test of these ideas can be made in a straight-
forward manner from (18), (19) and (4): there is a universal

relation between
[√

〈p2
T〉

〈p2
T〉1

]
i

and
√

1
N

2/3
A

dn
dy ,

[√
〈p2

T〉
〈p2

T〉1

]
i

=
(

r0

R1

1
〈n〉1

) √
k

k − 2
1

F (η)
√

η

√
1

N
2/3
A

dn

dy
.

(22)
A similar relation was suggested in the framework of

the CGC model [58], and a quantitative discussion was
presented in [59]. One should notice that (22) is fairly
independent of the kind of particle i (π, k, p), independent
of energy (from 200 GeV to 1800 GeV), and independent of
the interacting nuclei (Au+Au at RHIC, p+p at Tevatron).

From comparison with data, it can be checked that k(η)
is a function with the properties enunciated in the intro-
duction,

k(η) =
2φ2(η)

φ2(η) − 1
, (23)

with
φ(η) =

√
F (η) + F (η)

√
η. (24)

The function k(η) has the qualitative behavior that we
expect, namely, it has a minimum kmin � 3 at ηmin = 2 and
goes to infinity as η → 0 and η → ∞. This means that in
such limits only one kind of cluster is produced. However,
the minimum value of k is reached at a slightly high value
of η. There are reasons to think about a modification of
(24), keeping the right limits for k at η → 0 and η → ∞,
but introducing a shift in η. In fact, F (η)

√
η = 1 − e−η

is the average fraction of the total area occupied by clus-
ters at density η when the area is homogeneous. Actually,
in a heavy ion collisions, the surface is not homogeneous
when nuclei profile functions of the Wood–Saxons type are
taken into account [60]. This increases the average frac-
tion of occupied area, resulting in a faster decrease of the
exponential. Due to this, we use the function given by
(23) and (24) for k but introducing the shift η → bη, in
such a way that the minimum value of k is reached at
ηmin = 0.6 (b = 3.3). In Fig. 2 we present the functions
before and after the change. Notice that in both cases the
minimum value is k � 3, where the variance of the p2

T
distribution diverges.

The main dependence of k on the energy comes from the
dependence on η. InA+A collisions, as the energy increases,
the density of strings increases and k increases. However,
there is an additional dependence on the energy, working on
the opposite way, which up to now has not been taken into
account. It is well known that even in hadron–hadron col-
lisions at

√
s � 30 GeV, there is enough energy to produce

hard scatterings. This modifies the single exponential in the
transverse momentum distribution. As far as the number
of strings is very low there is no possibility of overlapping.
In perturbative QCD, the study of the production of n
gluons leads to a distribution whose width is controlled by



J. Dias de Deus et al.: Universality of transverse momentum distributions in string percolation framework 235

Fig. 2. Dependence of k on η, using (23) and (24) (dotted line)
and changing η → 3.3η (solid line)

kµ, where µ = 1/(1−γ), γ =
√

6αs
π − 11

8

(
1 + 2nf

27

)
αs
π . As

the energy increases, the QCD coupling constant αs → 0
and µ → 1, in such a way that asymptotically only the
parameter k remains. As kµ decreases with the energy the
distribution becomes broader.

To take into account this energy dependence we will
use an effective k given by

keff = k [a (µ − 1) + 1], (25)

with µ as defined above. We use αs(MZ) = 0.122, so
αs(

√
s = 19.4 GeV) ≈ 0.165, αs(

√
s = 200 GeV) ≈ 0.108

and αs(
√

s = 1800 GeV) ≈ 0.081. The above expression
satisfies keff = k for s → ∞. The values for αs are lower
that the ones used in other approaches for hadronic interac-
tions, especially at SPS energies – at low energy, threshold
effects can be not negligible. In other words to take into
account these uncertainties, we have introduced the phe-
nomenological expression (25). In this way, the dependence
of k on αs is modified through the factor a.

The value of a, a = 0.3, was determined by the compar-
ison of the pT distributions for Pb + Pb collisions at SPS
energies and Au+Au collisions at

√
s = 200 GeV with the

experimental data.
From now on, in order to compare with experimental

data, we will use keff from (25). Through this equation, k –
solid line in Fig. 2 – is multiplied by a factor that depends on
the energy. This factor is around 1.28 at SPS energies, 1.19
at RHIC energies and 1.13 at LHC energies (5500 GeV).
Note that the dependence of k on η and on the energy is
model dependent, so it may suffer changes, specially at low
energy where the threshold effects can be not negligible.
The fact that we want to stress here is the existence of
a minimum on the behavior of k versus η, related to a

Fig. 3. Experimental PHOBOS data on low pT distributions
for pions, kaons and protons, together with our results

maximum of fluctuations, and the limits of k at low and
high density, where k → ∞.

4 Comparison with the experimental data

As we said before, the number of strings is computed using
a Monte-Carlo code [39] based on the quark gluon string
model. Knowing NS and r0 = 0.25 fm, we can compute η for
each type of collision. From (23)–(25) we obtain k. Finally,
the values of 〈p2

T〉1p = 0.30, 〈p2
T〉1k = 0.14, 〈p2

T〉1π = 0.06
are normalized to reproduce the dependence of 〈p2

T〉 on cen-
trality for protons, kaons and pions. Note that the different
〈p2

T〉1s correspond to different γs in the original gamma dis-
tribution

With these values, we have entirely determined (16) for
all types of collision energies and rapidities.

At low pT, the behavior given by (21) is clearly con-
firmedbyPHOBOSdata, namely thederivative of log f(pT)
with log pT vanishes as pT → 0. As 〈p2

T〉1p > 〈p2
T〉1k >

〈p2
T〉1π, the absolute value is larger for pions than for kaons

and than for protons. At higher pT, the distributions be-
come similar. This is shown in Fig. 3, where we present our
results for Au + Au central collisions at

√
s = 200 GeV,

η = 2.5, keff = 4, together with the PHOBOS data at low
pT and PHENIX data at higher pT. Notice that in the fig-
ure there are data from two different collaborations with
different normalizations. Probably, this is at the origin of
the minor differences between the data and our results. (We
do not fit the PHOBOS data, but just apply (16) fixing the
normalization dn

dy to reproduce the point at pT = 2 GeV.)
Now, let us discuss the interplay between low and

high pT.
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One defines the ratio RCP(pT) between central and
peripheral collisions as

RCP(pT) =
f ′(pT, y = 0)/N ′

coll

f(pT, y = 0)/Ncoll
, (26)

where the distribution in the numerator corresponds to
higher densities, η′ > η. The division by Ncoll essentially
eliminates NS from dn

dy (this is true only at mid-rapidity)
and from (16) and (6) we obtain

RCP(pT) =

(
k′−1

k′

)
(

k−1
k

) (
F (η′)
F (η)

)2
(
1 + F (η)

k
p2
T

〈p2
T〉1i

)k

(
1 + F (η′)

k′
p2
T

〈p2
T〉1i

)k′ .

(27)
In the pT → 0 limit, taking into account that 2

3 ≤ k−1
k < 1

and that F (η′) < F (η), we obtain

RCP(0) �
(

F (η′)
F (η)

)2

< 1 , (28)

approximately independent of k and k′. As η′/η increases,
the ratio RCP decreases, in agreement with the experimen-
tal data.

As pT increases, we have

RCP(pT) ∼ 1 + F (η)p2
T/〈p2

T〉1i

1 + F (η′)p2
T/〈p2

T〉1i
, (29)

and RCP increases with pT (again, F (η) > F (η′)).
At large pT,

RCP(pT) ∼ F (η)
F (η′)

k′

k
p2
T

k−k′
, (30)

which means that if we are in the low density (low energy,
low NA) branch of the k(η) curve, see Fig. 2, k > k′ and
RCP(pT) > 1) (Cronin effect). As η′/η increases the ratio
RCP(pT → ∞) increases (it must have a limit due to phase
space limitations).

As we increase the energy of the nucleus–nucleus colli-
sion, the energy density increases and one has to observe
the high density branch of the k(η) curve. There, for η′ > η,
k′ > k and suppression on pT occurs. The Cronin effect
will disappear at high energies and/or densities.

In the forward rapidity region, the division by Ncoll in
(26) does not cancel NS from dn

dy , since in this rapidity re-
gion NS is proportional to NA instead of Ncoll. Therefore,
an additional factor N ′

A/N ′
coll

NA/Ncoll
appears now in RCP(pT). As

N ′
coll−N ′

A ismuch larger thanNcoll−NA,RCP(pT, y = 3) <
RCP(pT, y = 0), thus a further suppression occurs, in agree-
ment with the experimental data [61,62]. In order to quan-
tify this suppression, let us consider central and peripheral
d + Au collisions at mid-rapidity and at y = 3.2. From
the BRAHMS Collaboration data [61] at pT � 2–3 GeV/c,
RCP(pT, y = 3.2)/RCP(pT, y = 0) � 0.45/1.25 = 0.36 for
0–20% and 60–80% degree of centrality. For these central-
ities, the values quoted by the collaboration are N ′

A(d) =
1.96, N ′

coll = 13.6, NA(d) = 1.39 and Ncoll = 3.3. The

resulting ratio (1.96/13.6)/(1.39/3.3) = 0.35 is in perfect
agreement with the data.

The ratio between RCP(pT) for two different particles,
for instance p and π, becomes, at large pT,

RP
CP(pT)

Rπ
CP(pT)

�
( 〈p2

T〉1P

〈p2
T〉1π

)k′−k

. (31)

For Au + Au central and peripheral collisions at
√

s =
200 GeV, we have k′ = 4 and k = 3.6 respectively. There-
fore, the ratio is close to 2, in good agreement with the
experimental data.

In Fig. 4, we compare our results for π0 production in
central and peripheral Au+Au and p+p collisions at

√
s =

200 GeV, together with the experimental data. In Fig. 5,
the nuclear modification factor for central and peripheral
Au+Au collisions at mid-rapidity are shown. In Fig. 6, we
show the comparison of our results for d+Au collisions at√

s = 200 GeV and at mid-rapidity, and in Fig. 7 we show
the corresponding nuclear modification factor. In Fig. 8 we
compare our results with the experimental data [63]2 for
central and peripheral Pb + Pb collisions at SPS energies.
We observe a reasonable agreement in all cases. Notice that
the trend of the data can be understood qualitatively from
our equation (16) and the ratios RCP(pT) or the nuclear
modification factor depend on the difference k′(η′) − k(η)
(at large pT) and on the ratio F (η′)

F (η) (at low pT), and not
on the absolute values of k′, k, F (η′) and F (η), in such a
way that the uncertainties in the computation of η′ and η
due to the values of r0 and NS are essentially canceled. All
the explanation stems from the facts that F (η′) < F (η)
for η′ > η and k′ > k for large densities and k′ < k for
small densities. Finally, in Fig. 9, we show our prediction
for LHC energies.

5 Back jet-like hadron correlations

One of the most interesting data from RHIC is the dis-
appearance of back to back jet-like hadrons in Au + Au
collisions, contrary to what happens in d + Au collisions.
We think that the suppression of produced jets in central
A + A collisions is indeed due to final state interactions –
jet-quenching or interactions with partons and comovers.
Here, for completeness, we would like to evaluate the in-
teraction of a quark or gluon jet with a final state formed
by a cluster of strings corresponding to a given value of
η. We will follow the reference [65]. In Fig. 10 we show
the formation of several strings in a nucleus–nucleus colli-
sion. At high density there will be overlapping of strings in
the transverse space, forming clusters. Above the percola-
tion critical density, essentially one cluster will be formed

2 We are aware that there is a big uncertainty concerning
SPS data (see [64] for more details). Nevertheless, we use these
data since they have been obtained by the same experimental
collaboration as the ones we have used to fix the value of µ1 in
our model. With this value we can reproduce also multiplicities
at SPS and RHIC energy. These considerations let us to have
a consistent description for pT and multiplicity distributions.
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Fig. 4. Comparison between our results and experimental data
from Au+Au central and peripheral collisions and p+p collisions
at

√
s = 200 GeV

Fig. 5. Comparison between our results and experimental data
on the nuclear modification factor from Au + Au central and
peripheral collisions at

√
s = 200 GeV

through the whole collision area. This colorless cluster can
act as a non-thermalized quark gluon plasma, where the
color would no longer be confined to hadronic or flux tube
dimensions but to the whole available area of the scattering.

The string-like shape of the color fields are oriented
along the collision axis. Consider a hard parton–parton col-
lision, which produces two hardly scattered partons which
are moving in the transverse plane to the reaction axis
and in opposite directions (Fig. 11). The interaction of
these partons with QCD fields of the strings affects the

Fig. 6. Our results for d + Au minimum bias collisions at√
s = 200 and mid-rapidity compared to experimental data

Fig. 7. Our results for d + Au minimum bias collisions at√
s = 200 and mid-rapidity normalized to our results for p-p

minimum bias collisions multiplied by the number of collisions,
compared to the experimental data

parton momentum distribution, which determines the dis-
tribution of secondary particles in the jet. In particular,
bremsstrahlung gluon radiation takes place in a tangential
direction by the parton crossing the gluon field of each
string. This gluon radiation will eventually produce low
pT particles. In other words, the jets are not going to dis-
appear but are going to be degraded to lower pT particles.
This is at the origin of the difference found by the STAR
collaboration [66] between near and away side pT distri-
butions.
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Fig. 8. Nuclear modification factor for Pb+Pb central collisions
at SPS energies

Fig. 9. Predictions for Pb + Pb central collisions at 5500 GeV

This interaction produces an asymmetry, the projection
of momentum of secondary particles in the jet along the
reaction axis (Fig. 10, z axis) becomes larger than in the
transverse direction (x axis). Let us consider a quark q1
passing through the flux strings transverse to the string
axis. We assume a constant static uniform chromoelectric
field pointed along the reaction axis. Because in the static
case chromomagnetic fields vanish, the force acting on the
quark q1 can be written as

→
F=

g

2
λa

1

→
Ea,

z

y

z

x

Fig. 10. Formation of strings in a nucleus–nucleus collision

y
2 >

1/2

<p  x
2 >

1/2

x  p 1

<p

2−x  p

Fig. 11. Hard scattered partons that can interact with
the strings

where g in the QCD coupling, g2

4π = αs and λa are the
Gell-Mann matrices. First, we compute the change of the
transverse momentum of q1 after crossing one string. Let
x and y axis be the coordinate system in the section where
q1 crosses the string, let the y axis be pointed along q1’s
direction of motion and let ξ be the distance between axis y
and line of q1 movement.Then q1 will cross the string surface
inpoints (ξ, y1(ξ)) and (ξ, y2(ξ)) and themomentumchange
will be

∆
→
p1 (ξ) =

∫ →
F (ξ, t)dt =

∫ y2(ξ)

y1(ξ)

→
F (ξ, y)dy

=
∫ y2(ξ)

y1(ξ)
g

λa
1

2

→
Ea (ξ, y)dy . (32)

Doing the average over all ξ we obtain

∆
→
p1 =

1∫ r0

−ro
dξ

∫ r0

−r0

dξ

∫ y2(ξ)

y1(ξ)
g

λa
1

2

→
Ea dy

=
1

2r0

∫
s1

ds g
λa

1

2

→
Ea , (33)

where S1 is the transverse string area. Applying the Gauss
theorem we have

∆
→
p1 =

→̂
z

2r0

gλa
1

2

∫
S1

→
E

→
dS=

→̂
z

2r0

gλa
1

2

∫
V

div
→
Ea dV
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=
→̂
z

2r0

g2

8
λa

1λa
2 , (34)

where gλa
2

2 is the color charge of quark q2 (string end) and
ẑ is the unit vector in the z direction. Doing the average
over the color states of q1 and q2, we obtain

∆p1 =
g2

8π0

1
2
√

2
16
3

=
4παS

3
√

2r0
. (35)

The average number of strings crossed by the quark is

N = 2r0Lm (36)

where L is distance traveled by the quark, L ≈ RA and m
is the number of strings per unit area

m =
NS

πR2
A

. (37)

In A + A collisions at mid-rapidity, NS ≈ 2N
4/3
A at

RHIC energies and 3N
4/3
A at LHC energies. In the forward

rapidity region NS will be 2NA and 3NA at RHIC and LHC
energies respectively.

The mean transverse momentum of quark q1 after it
crosses N strings would be

〈∆p2
ZN 〉 = 〈(∆pZN−1 + ∆pZ)2〉

= 〈∆p2
ZN−1〉 + 〈∆p2

Z〉 + 2〈∆pZN−1∆pZ〉 .(38)

As ∆pZN−1 and ∆pZ may be pointed in any direction along
the string independently, the last term vanishes and there-
fore

〈∆p〉tot �
√

N∆p1 . (39)

For αS � 0.3 and r0 = 0.2–0.25, we obtain from (35)
∆p1 � 0.9–0.75 GeV/c. For central Au + Au collisions at
mid-rapidity we obtain

√
N � 5.5–7. Then 〈∆p〉tot � 4.9–

5.2 GeV/c, which is comparable with the pT triggered;
therefore the back to back jet-like correlations disappears.
On the contrary, for central d+Au collisions,

√
N � 0.75–

0.85 and 〈∆p〉tot � 0.67–0.64 GeV/c, which is much smaller
than the pT of the triggered jet, pT > 4 GeV/c, and the
back to back jet-like correlation survives. An intermediate
situation is Au + Au central collisions at forward rapid-
ity, where

√
N � 2.5–3.2 and 〈∆p〉tot � 2.2–2.4 GeV/c. In

this case, the back to back jet structure is only partially
destroyed. In the case of peripheral collisions, the suppres-
sion would be stronger when the jet is perpendicular to
reaction plane (the plane spanned by the beam axis and
the impact parameter, b �= 0) than when the jet is in the
reaction plane, in agreement with the experimental data.
Notice that before we deduced stronger suppression at for-
ward than at mid-rapidities for the nuclear modification
factor but we predict less suppression of the jet. In the
first case, the origin of the further suppression is the nor-
malization of the clustering in the initial state and in the
second case, the lower interaction of the quark jet with the
final state is due to the smaller string densities present at
forward rapidities.

Finally, let us mention that, in the framework of the
CGC, it has been also found stronger depletion of the back
to back correlations in p + A and A + A collisions than in
the case of p + p collisions [67].

6 Conclusions

We have obtained a universal transverse momentum dis-
tribution that allows us to describe the low pT shape of
the different particle species and the suppression of the
high pT yield compared to the scaling with the number of
collisions, Ncoll, expected on the basis of the factorization
theorem of QCD.

The shape of this distribution is determined essentially
by two functions, F (η) and k(η), which depend on the
density of the color sources η. The first one stems from
the dynamics of the color clusters, and it is at the origin
of the suppression of the multiplicity. It also controls the
transverse momentum distribution of the produced parti-
cles due to the fragmentation of the cluster. The second
one, k(η), is related to the fluctuations in the number of
strings per cluster. At low density, k decreases with the
density and, on the contrary, at high density it increases
with the density.

The fact that for p+Au and d+Au central collisions the
densities are not far from the minimum of k explains the
Cronin effect. It will disappear at higher energy or higher
densities because of the increase of k. In the forward rapidity
region, the number of color sources scales with the number
of participant nucleons, NA, while in the central rapidity
region it scales with the number of collisions Ncoll ∝ N

4/3
A .

Therefore, comparing the pT yield scaled by the number
of collisions, in the forward rapidity region there will be a
suppression due to the additional factor 1/N1/3

A .
The multiplicity distributions are related to the trans-

verse momentum ones through the cluster size distribution,
whose width is controlled by k. At high mean multiplici-
ties the relative dispersion of the multiplicity distribution
is given by 1/k, decreasing as the energy increases.

The disappearance of the back to back jet-like hadron
correlations in Au+Au collisions is a final state interaction
due to the interaction of the quark jet with the cluster of
strings formed in the initial state. This cluster is less dense
in the forward rapidity region, so we predict a smaller
suppression of the correlation in this case.

We can conclude that the clustering of color sources pro-
vides us with a framework suitable to describe the main
features of the transverse momentum and multiplicity dis-
tributions at RHIC and SPS energies. This, together with
the successful explanation of the dependence of the fluc-
tuations of transverse momentum on the number of par-
ticipants and the dependence on the multiplicity of the
strength of the two-body and three-body correlations, fa-
vors this approach.

We are aware of the limitations of our framework, com-
ing mainly from the lack of a direct derivation from QCD.
Also, we do not included any hard component in the single
string. Therefore, at fixed energy and above some pTm our
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picture will fail. However, as the energy and the density
grow, there are more overlapping strings which extend the
validity of the description to a higher pTm. Finally, asymp-
totically, our picture is valid for all transverse momentum,
recovering a single exponential, exp(−F (η)p2

T/〈p2
T〉i).

Our approach has similarities with the CGC. In both
approaches there is clustering – of gluons in the CGC and
of color sources in our approach. In both approaches, the
initial state interactions – gluon saturation in the CGC or
clustering of color sources in the percolation approach –
produce a suppression of the pT distributions. In CGC the
gluon field is renormalized as the color charge increases.
In our approach, we have redefined our main variables for
the cluster as the color density increases. The suppression
of the high pT yield and the saturation of the multiplicity
per participant at high density are related to each other
and they are a consequence of the saturation of gluons at
the scale given by the saturation momentum QS in the
CGC [68]. The clustering of strings produces also the sup-
pression of pT and the independence of the multiplicity
per participant on NA. We obtain, as in the CGC, larger
suppression of the pT yield at forward rapidity, and also we
predict that the Cronin effect would disappear at higher en-
ergies. Both approaches obtain a scaling for the transverse
momentum distributions. We make an extension of the soft
spectra to the region of hard pT by means of clustering of
strings. The CGC does an extension of the hard region to
the soft one by means of clustering of gluons; therefore in
a broad range of pT both approaches should coincide.

In QCD, the distribution for n gluons is approximately
given, in the modified leading log approximation, by the
generalized gamma function [69]

Γn

Γ
∼ 1

〈n〉
(

n

〈n〉
)kµ−1

exp
(

−D
n

〈n〉
)µ

, (40)

whose width becomes broader as the energy increases. Ac-
cording to our considerations we expect a narrower width
of this distribution above a certain density. It would be
welcome to have a proof of that.

Let us remark that another possibility of testing our
approach is to study the behavior of the forward–backward
correlations which are proportional to the fluctuations in
the number of independent clusters. At moderate density,
we expect a rise of these correlations as it is observed at p+p
and h+A collisions. On the contrary, at high density, these
long range correlations should disappear as a consequence
of the formation of a large cluster of strings [70]. A similar
behavior is expected in the CGC.

Finally, let us comment that our approach provide us
with an initial state which can affect the final state in-
teractions, as it was shown above when we studied the
disappearance of back jet-like correlations.

This means that other phenomena as jet-quenching or
interaction with comovers are not necessarily contradictory
to our approach.Weonly claim that at lowand intermediate
pT, pT ≤ 4–5 GeV/c, the percolation of color sources is able
to give a simple and reasonable description of the data.
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